|本期目錄/Table of Contents|

[1]管彬,周竹青.細胞自噬在擬南芥應答镉脅迫中的作用[J].江蘇農業科學,2019,47(14):90-95.
 Guan Bin,et al.Role of autophagy in response to cadmium stress in Arabidopsis thaliana[J].,2019,47(14):90-95.
點擊複制

細胞自噬在擬南芥應答镉脅迫中的作用(PDF)
分享到:

《江蘇農業科學》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期數:
2019年第14期
頁碼:
90-95
欄目:
遺傳育種與耕作栽培
出版日期:
2019-08-10

文章信息/Info

Title:
Role of autophagy in response to cadmium stress in Arabidopsis thaliana
作者:
管彬 周竹青
華中農業大學生命科學技術學院,湖北武漢 430070
Author(s):
Guan Binet al
關鍵詞:
擬南芥細胞自噬镉脅迫活性氧
Keywords:
-
分類號:
Q945.78
DOI:
-
文獻標志碼:
A
摘要:
以擬南芥野生型(WT)、呼吸暴發氧化酶f(rbohf)突變體、細胞自噬2(atg2)突變體、atg5突變體和轉基因GFP-ATG8a爲材料,利用遺傳學、細胞學手段分析細胞自噬在應答镉脅迫中的作用。結果表明,镉脅迫可以誘導野生型擬南芥根中活性氧(ROS)的積累;镉脅迫誘導野生型擬南芥中自噬相關基因ATG2、ATG5、ATG7和ATG8a的表達以及自噬體的積累。進一步研究表明,在镉脅迫處理後,atg突變體中自噬體的數量與野生型相比明顯降低,ROS水平卻顯著升高。上述結果初步表明,細胞自噬通過調節ROS應答镉脅迫。研究結果爲深入研究植物應答镉脅迫的分子機制提供了依據。
Abstract:
-

參考文獻/References:

[1]Qiu Q,Wang Y T,Yang Z Y,et al. Responses of different Chinese flowering cabbage (Brassica parachinensis L.) cultivars to cadmium and lead exposure:screening for Cd+Pb pollution-safe cultivars[J]. Clean-Soil Air Water,2011,39(11):925-932.
[2]王宇濤,陳志勇,曾琬淋,等. 擬南芥對镉脅迫的生理響應[J]. 華南師範大學學報(自然科學版),2014(2):99-107.
[3]Shapiguzov A,Vainonen J P,Wrzaczek M,et al. ROS-talk - how the apoplast,the chloroplast,and the nucleus get the message through[J]. Frontiers in Plant Science,2012,3:292.
[4]Torres M A,Dangl J L. Functions of the respiratory burst oxidase in biotic interactions,abiotic stress and development[J]. Current Opinion in Plant Biology,2005,8(4):397-403.
[5]Gupta D K,Pena L B,Romero-Puertas M C,et al. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity[J]. Plant Cell and Environment,2017,40(4):509-526.
[6]Bassham D C. Plant autophagy-more than a starvation response[J]. Current Opinion in Plant Biology,2007,10(6):587-593.
[7]van Doorn W G,Woltering E J. What about the role of autophagy in PCD?[J]. Trends in Plant Science,2010,15(7):361-362.
[8]Pérez-Pérez M E,Lemaire S D,Crespo J L. Control of autophagy in chlamydomonas is mediated through redox-dependent inactivation of the ATG4 protease[J]. Plant Physiology,2016,172(4):2219-2234.
[9]Bassham D C,Laporte M,Marty F,et al. Autophagy in development and stress responses of plants[J]. Autophagy,2006,2(1):2-11.
[10]Suttangkakul A,Li F Q,Chung T,et al. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis[J]. Plant Cell,2011,23(10):3761-3779.
[11]Li F,Chung T,Vierstra R D. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis[J]. Plant Cell,2014,26(2):788-807.
[12]Yoshimoto K,Takano Y,Sakai Y. Autophagy in plants and phytopathogens[J]. FEBS Letters,2010,584(7):1350-1358.
[13]Suzuki K,Ohsumi Y. Current knowledge of the pre-autophagosomal structure (PAS)[J]. FEBS Letters,2010,584(7):1280-1286.
[14]Thompson A R,Doelling J H,Suttangkakul A,et al. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways[J]. Plant Physiology,2005,138(4):2097-2110.
[15]韓少傑. GAPCs在細胞自噬和植物免疫中的功能研究[D]. 北京:清華大學,2015.
[16]Chung T,Phillips A R,Vierstra R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci[J]. Plant Journal,2010,62(3):483-493.
[17]肖清鐵,王經源,鄭新宇,等. 水稻根系響應镉脅迫的蛋白質差異表達[J]. 生態學報,2015,35(24):8276-8283.
[18]李桂蘭,郭彥. 細胞自噬對植物程序性死亡的控制綜述[J]. 江蘇農業科學,2010(2):7-9.
[19]Xiang Y,Contento A L,Bassham D. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis[J]. Autophagy,2007,3(3):257-258.
[20]Xiong Y,Contento A L,Nguyen P Q,et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis[J]. Plant Physiology,2007,143(1):291-299.
[21]Yoshimoto K,Jikumaru Y,Kamiya Y,et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis[J]. Plant Cell,2009,21(9):2914-2927.
[22]張欣,王華忠,王利,等. 不同品種小麥幼苗耐镉差異[J]. 江蘇農業科學,2018,46(7):61-65.
[23]唐雲舒,劉傑,蔔永輝,等. 6個適合廣西種植的水稻品種對镉的累積差異[J]. 江蘇農業科學,2017,45(4):52-55.
[24]Deretic V,Jiang S,Dupont N. Autophagy intersections with conventional and unconventional secretion in tissue development,remodeling and inflammation[J]. Trends in Cell Biology,2012,22(8):397-406.
[25]王燕,劉玉樂. 植物細胞自噬研究進展[J]. 中國細胞生物學學報,2010(5):677-689.
[26]Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation[J]. Plant Physiology,1996,111(4):1233-1241.
[27]Guiboileau A,Yoshimoto K,Soulay F,et al. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis[J]. New Phytologist,2012,194(3):732-740.

相似文獻/References:

[1]王宏歸,黃晨,姜雅,等.CONSTANS LIKE 7參與調控擬南芥的向地性以及側根、子葉的發育[J].江蘇農業科學,2015,43(12):48.
 Wang Honggui,et al.Study on CONSTANS LIKE 7 involved in regulating gravitropism and development of side root and cotyledon in Arabidopsis[J].,2015,43(14):48.
[2]李雪,邵鐵梅,安勝軍.1種簡單方便的擬南芥發芽誘導新技術[J].江蘇農業科學,2015,43(12):51.
 LI Xue,et al.A simple and convenient technology for bud induction of Arabidopsis thaliana[J].,2015,43(14):51.
[3]王琳,孫慶玲,劉輝,等.擬南芥缺失突變體at14a的比較轉錄組分析[J].江蘇農業科學,2016,44(04):70.
 Wang Lin,et al.Comparative transcriptional analysis of mutant at14a of Arabidopsis thaliana[J].,2016,44(14):70.
[4]韓蕾,李俊林,蘇彥華.擬南芥突變體kea的表型分析及對生長素的響應特征[J].江蘇農業科學,2016,44(06):30.
 Han Lei,et al.Phenotypic analysis of arabidopsis mutant kea and its response to exogenous auxin[J].,2016,44(14):30.
[5]奈婕菲,程玉祥.一個楊樹GDSL基因組織表達的特性及其在擬南芥異源的表達[J].江蘇農業科學,2014,42(03):16.
 Nai Jiefei,et al.Tissue expression of a poplar GDSL gene and its heterologous expression analysis in Arabidopsis thaliana[J].,2014,42(14):16.
[6]郭瑾,薛永來,杜道林.植物激素調控擬南芥根系發育的研究進展[J].江蘇農業科學,2014,42(05):7.
 Guo Jin,et al.Research progress of phytohormones regulating root system development of Arabidopsis thaliana[J].,2014,42(14):7.
[7]劉廣志,陳炳佑,侍福梅.MAP18參與了脫落酸調控的擬南芥氣孔關閉及根生長[J].江蘇農業科學,2015,43(11):55.
 Liu Guangzhi,et al.MAP18 involved in stomatal closure and root growth of Arabidopsis thaliana regulated by abscisic acid[J].,2015,43(14):55.
[8]姜上川,梅超,王小芳,等.PPR蛋白APPR6參與ABA調控擬南芥種子萌發與幼苗生長[J].江蘇農業科學,2016,44(04):53.
 Jiang Shangchuan,et al.PPR protein APPR6 involved in ABA regulation of seed germination and seedling growth in Arabidopsis[J].,2016,44(14):53.
[9]李靜婷,趙旭耀,劉超凡,等.熱脅迫對轉TasHSP16.9擬南芥幼苗生長生理特性的影響[J].江蘇農業科學,2016,44(10):113.
 Li Jingting,et al.Effects of heat stress on growth and physiological indices of TasHSP16.9 transgenic Arabidopsis thaliana seedlings[J].,2016,44(14):113.
[10]郝東利,楊順瑛,黃亞楠,等.擬南芥铵轉運蛋白AtAMT1.3的電生理功能[J].江蘇農業科學,2017,45(08):36.
 Hao Dongli,et al.Electrophysiological study on Arabidopsis ammonium transporter AtAMT1.3[J].,2017,45(14):36.

備注/Memo

備注/Memo:
收稿日期:2018-04-27
基金項目:國家自然科學基金(編號:31471428)。
作者簡介:管彬(1991—),男,江西鄱陽人,碩士研究生,主要從事植物逆境細胞生物學方面的研究。E-mail:534796418@qq.com。
通信作者:周竹青,博士,教授,主要從事植物逆境細胞生物學和植物細胞結構與功能的研究。E-mail:zhouzhuqing@mail.hzau.edu.cn。
更新日期/Last Update: 2019-07-20