|本期目錄/Table of Contents|

[1]趙龍妹.青藏高原土壤微生物多樣性研究進展[J].江蘇農業科學,2019,47(14):6-12.
 Zhao Longmei.Research progress on soil microbial diversity in Qinghai-Tibet Plateau[J].,2019,47(14):6-12.
點擊複制

青藏高原土壤微生物多樣性研究進展(PDF)
分享到:

《江蘇農業科學》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期數:
2019年第14期
頁碼:
6-12
欄目:
專論與綜述
出版日期:
2019-08-10

文章信息/Info

Title:
Research progress on soil microbial diversity in Qinghai-Tibet Plateau
作者:
趙龍妹
河南科技大學動物科技學院,河南洛陽 471023
Author(s):
Zhao Longmei
關鍵詞:
青藏高原土壤微生物多樣性影響因素研究方法
Keywords:
-
分類號:
S154.3
DOI:
-
文獻標志碼:
A
摘要:
土壤微生物是土壤生態系統中的重要組成部分,其多樣性在整個土壤生態系統的物質循環中起著關鍵作用,因此對其多樣性的研究具有重要意義。土壤微生物多樣性受到環境和人爲幹擾等多方面的影響,隨著研究的不斷深入,對其研究的方法也從傳統培養法發展到生化法和分子生物學法。目前青藏高原土壤微生物多樣性的研究已經取得一些進展,本文從青藏高原土壤微生物多樣性的影響因素、研究方法和研究現狀等方面簡要地綜述了目前國內外的相關進展。
Abstract:
-

參考文獻/References:

[1]Shanmugam,S,Magbanua Z,Williams M A,et al. Bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems[J]. Microbial Ecology,2017,73(3):556-569.
[2]孫懷博. 青藏高原阿裏地區土壤細菌群落多樣性及其分布的研究[D]. 南京:南京農業大學,2013.
[3]張憲洲,楊永平,樸世龍,等. 青藏高原生態變化[J]. 科學通報,2015,60(32):3048-3056.
[4]Requena N,Perez-Solis E,Azcon-Aguilar C,et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology,2001,67(2):495-498.
[5]楊海君,肖啓明,劉安元. 土壤微生物多樣性及其作用研究進展[J]. 南華大學學報(自然科學版),2005,19(4):21-26,31.
[6]林先貴,胡君利. 土壤微生物多樣性的科學內涵及其生態服務功能[J]. 土壤學報,2008,45(5):892-900.
[7]周桔,雷霆. 土壤微生物多樣性影響因素及研究方法的現狀與展望[J]. 生物多樣性,2007,15(3):306-311.
[8]Shang W,Zhao L,Wu X D,et al. Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway,north of Kunlun Mountains,China[J]. Journal of Mountain Science,2015,12(4):1010-1024.
[9]Rui J P,Li J B,Wang S P,et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau[J]. Applied and Environmental Microbiology,2015,81(17):6070-6077.
[10]顧振寬,杜國祯,朱炜歆,等. 青藏高原東部不同草地類型土壤養分的分布規律[J]. 草業科學,2012,29(4):507-512.
[11]Zhang X,Johnston E R,Barberan A,et al. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity[J]. Global change biology,2017,23(10):4318-4332.
[12]Hu W G,Zhang Q,Tian T,et al. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau[J]. Extremophiles,2016,20(3):337-349.
[13]Wang N F,Zhang T,Zhang F,et al. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing[J]. Frontiers in microbiology,2015,6:1188.
[14]Manoharan L,Rosenstock N P,Williams A,et al. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity[J]. Applied Soil Ecology,2017,115:53-59.
[15]Lei Y P,Xiao Y L,Li L F,et al. Impact of tillage practices on soil bacterial diversity and composition under the tobacco-rice rotation in China[J]. Journal of Microbiology,2017,55(5):349-356.
[16]澤讓東科,文勇立,艾鷖,等. 放牧對青藏高原高寒草地土壤和生物量的影響[J]. 草業科學,2016,33(10):1975-1980.
[17]Maharjan M,Sanaullah M,Razavi B S,et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils[J]. Applied Soil Ecology,2017,113:22-28.
[18]Cambi M,Paffetti D,Vettori C A,et al. Assessment of the impact of forest harvesting operations on the physical parameters and microbiological components on a Mediterranean sandy soil in an Italian stone pine stand[J]. European Journal of Forest Research,2017,136(2):205-215.
[19]Wang Y S,Li C N,Kou Y P,et al. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows[J]. Soil Biology & Biochemistry,2017,115:547-555.
[20]Li W B,Bai Z,Jin C J,et al. The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest[J]. Science of the Total Environment,2017,590/591:242-248.
[21]Chen L J,Li C S,Feng Q,et al. Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China[J]. Science of the Total Environment,2017,598:64-70.
[22]Santonja M,Rancon A,Fromin N,et al. Plant litter diversity increases microbial abundance,fungal diversity,and carbon and nitrogen cycling in a Mediterranean shrubland[J]. Soil Biology & Biochemistry,2017,111:124-134.
[23]Sˇtovícˇek A,AekAzatyan A,Soares M I M,et al. The impact of hydration and temperature on bacterial diversity in arid soil mesocosms[J]. Frontiers in Microbiology,2017,8:1078.
[24]Wang C T,Zhao X Q,Zi H B,et al. The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau[J]. Applied Soil Ecology,2017,116:30-41.
[25]斯貴才,王光鵬,雷天柱,等. 青藏高原東北緣土壤微生物群落結構變化[J]. 幹旱區研究,2015,32(5):849-855.
[26]曹宏傑,倪紅偉. 土壤微生物多樣性及其影響因素研究進展[J]. 國土與自然資源研究,2015(3):85-88.
[27]Kirk J L,Beaudette L A,Hart M,et al. Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods,2004,58(2):169-188.
[28]蔡晨秋,唐麗,龍春林. 土壤微生物多樣性及其研究方法綜述[J]. 安徽農業科學,2011,39(28):17274-17276,17278.
[29]李潔,李睿玉,楊紅,等. 土壤微生物多樣性的研究方法[J]. 山西農業科學,2016,44(11):1738-1742,1746.
[30]吳才武,趙蘭坡. 土壤微生物多樣性的研究方法[J]. 中國農學通報,2011,27(11):231-235.
[31]Mazziotti M,Henry S,Laval-Gilly P,et al. Comparison of two bacterial DNA extraction methods from non-polluted and polluted soils[J]. Folia microbiologica,2017,63(1):85-92.
[32]Widmer F,Fliessbach A,Laczko E,et al. Assessing soil biological characteristics:a comparison of bulk soil community DNA-,PLFA-,and BiologTM-analyses[J]. Soil Biology & Biochemistry,2001,33(7/8):1029-1036.
[33]Finney D M,Buyer J S,Kaye J P. Living cover crops have immediate impacts on soil microbial community structure and function[J]. Journal of Soil and Water Conservation,2017,72(4):361-373.
[34]Meeboon N,Leewis M C,Kaewsuwan S,et al. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils[J]. Archives of Microbiology,2017,199(6):839-851.
[35]Mauffret A,Bara N,Joulian C. Effect of pesticides and metabolites on groundwater bacterial community[J]. Science of the Total Environment,2017,576:879-887.
[36]Canfora L,Salvati L,Benedetti A,et al. Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy[J]. Environmental Monitoring and Assessment,2017,189(7):319.
[37]Silvani V A,Colombo R P, Scorza M V,et al. Arbuscular mycorrhizal fungal diversity in high-altitude hypersaline Andean wetlands studied by 454-sequencing and morphological approaches[J]. Symbiosis,2017,72(2):143-152.
[38]Huang C K,Shi Y J,Sheng Z Y,et al. Characterization of microbial communities during start-up of integrated fixed-film activated sludge (IFAS) systems for the treatment of oil sands process-affected water (OSPW)[J]. Biochemical Engineering Journal,2017,122:123-132.
[39]牛犇,張立峰,馬榮榮,等. 高寒草甸土壤微生物量及酶活性的研究[J]. 南開大學學報(自然科學版),2016,49(4):53-60.
[40]于健龍,石紅霄. 高寒草甸不同退化程度土壤微生物數量變化及影響因子[J]. 西北農業學報,2011,20(11):77-81.
[41]斯貴才,袁豔麗,王建,等. 藏東南森林土壤微生物群落結構與土壤酶活性隨海拔梯度的變化[J]. 微生物學通報,2014,41(10):2001-2011.
[42]斯貴才,王建,夏燕青,等. 念青唐古拉山沼澤土壤微生物群落和酶活性隨海拔變化特征[J]. 濕地科學,2014,12(3):340-348.
[43]馮虎元,馬曉軍,章高森,等. 青藏高原多年凍土微生物的培養和計數[J]. 冰川凍土,2004,26(2):182-187.
[44]王豔發,魏士平,崔鴻鵬,等. 青藏高原凍土區土壤垂直剖面中微生物的分布與多樣性[J]. 微生物學通報,2016,43(9):1902-1917.
[45]Wu X D,Xu H Y,Liu G M,et al. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan Plateau[J]. Applied Soil Ecology,2017,120:81-88.
[46]Boonchayaanant B,Nayak D,Du X,et al. Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions[J]. Water Research,2009,43(18):4652-4664.
[47]Long H Z,Wang Y L,Chang S J,et al. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau[J]. Environmental Monitoring and Assessment,2017,189:116.
[48]Zhang G S,Niu F J,Ma X J,et al. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region[J]. Canadian Journal of Microbiology,2007,53(8):1000-1010.
[49]Zhan B L,Tang S K,Chen X M,et al. Streptomyces lacrimifluminis sp nov,a novel actinobacterium that produces antibacterial compounds,isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(12):4981-4986.
[50]張東傑. 青藏高原高寒草甸植被與土壤特征[J]. 草業科學,2015,32(2):269-273.
[51]Zhang Y Q,Liu H Y,Chen J,et al. Diversity of culturable actinobacteria from Qinghai-Tibet Plateau,China[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2010,98(2):213-223.
[52]Zhang X F,Xu S J,Li C M,et al. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau[J]. Research in Microbiology,2014,165(2):128-139.
[53]Zhao S Y,Zhuang L J,Wang C,et al. High-throughput analysis of anammox bacteria in wetland and dryland soils along the altitudinal gradient in Qinghai-Tibet Plateau[J]. Microbiology Open,2017,7(2):e00556.
[54]陳懂懂,孫大帥,張世虎,等. 放牧對青藏高原東緣高寒草甸土壤微生物特征的影響[J]. 蘭州大學學報(自然科學版),2011,47(1):73-77,81.
[55]王蓓,孫庚,羅鵬,等. 模擬升溫和放牧對高寒草甸土壤微生物群落的影響[J]. 應用與環境生物學報,2011,17(2):151-158.
[56]Zhang B,Chen S Y,He X Y,et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet Plateau[J]. PLoS One,2014,9(8):e103859.
[57]Li N,Wang G X,Gao Y H,et al. Warming effects on plant growth,soil nutrients,microbial biomass and soil enzymes activities of two Alpine Meadows in Tibetan Plateau[J]. Polish Journal of Ecology,2011,59(1):25-32.
[58]張琪. 高寒草原區不同植被恢複方式對土壤微生物的影響研究[D]. 蘭州:蘭州大學,2015.
[59]Xiong Q L,Pan K W,Zhang L,et al. Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau,southwestern China[J]. Applied Soil Ecology,2016,101:72-83.
[60]Niu F,He J,Zhang G,et al. Effects of enhanced UV-B radiation on the diversity and activity of soil microorganism of alpine meadow ecosystem in Qinghai-Tibet Plateau[J]. Ecotoxicology,2014,23(10):1833-1841.
[61]程長林,任愛勝,劉鑒洪,等. 青藏高原社區畜牧業發展模式研究[J]. 江蘇農業科學,2018,46(2):296-300.
[62]高麗楠,張宏. 青藏高原高寒草地土壤鐵的空間異質性[J]. 江蘇農業科學,2017,45(15):239-243.

相似文獻/References:

[1]周虹,楊占武.青藏高原高寒沙區小葉錦雞凋落物下土壤細菌菌群的DGGE分析[J].江蘇農業科學,2015,43(12):353.
 Zhou Hong,et al.Analysis of bacterial flora in alpine sand soils under litter decomposition of Caragana microphylla in Tibetan Plateau by denaturing gradient gel electrophoresis analysis[J].,2015,43(14):353.
[2]孫紅梅,曹連賓,郝力壯,等.酵母培養物對牦牛瘤胃發酵及甲烷産量的影響[J].江蘇農業科學,2015,43(03):177.
 Sun Hongmei,et al.Effects of yeast culture on yak rumen fermentation and methane emissions[J].,2015,43(14):177.
[3]程長林,任愛勝,劉鑒洪,等.青藏高原社區畜牧業發展模式研究[J].江蘇農業科學,2018,46(02):296.
 Cheng Changlin,et al.Study on community animal husbandry development model in Qinghai-Tibet Plateau[J].,2018,46(14):296.
[4]江偉,于小飛,田永蘭,等.镉汙染對文冠果土壤微生物的影響[J].江蘇農業科學,2018,46(06):228.
 Jiang Wei,et al.Effect of Cd contamination on soil microorganism of Xanthoceras sorbifolia Bunge[J].,2018,46(14):228.
[5]孫添,王國傑,婁丹,等.青藏高原區域多源土壤濕度數據的對比分析[J].江蘇農業科學,2018,46(10):285.
 Sun Tian,et al.Contrastive analysis of multi-sensor soil moisture datasets of Tibetan Plateau[J].,2018,46(14):285.
[6]王朋朋,王丹,王昊,等.長期氮、磷添加對青藏高原2種高寒草甸植物光合特性的影響[J].江蘇農業科學,2019,47(13):325.
 Wang Pengpeng,et al.Effects of long-term nitrogen and phosphorus addition on photosynthetic characteristics of two alpine meadow plants[J].,2019,47(14):325.

備注/Memo

備注/Memo:
收稿日期:2018-03-22
基金項目:河南科技大學博士科研啓動基金(編號:13480076)。
作者簡介:趙龍妹(1988—),女,河南洛陽人,博士,講師,主要從事功能微生物相關研究。Tel:(0379)64282341;E-mail:zhaolongmei@126.com。
更新日期/Last Update: 2019-07-20