• <blockquote id="qonsza"></blockquote>
                • |本期目錄/Table of Contents|

                  [1]章紹康,弓曉峰,易佳璐,等.多種強化技術聯合植物修複重金屬汙染土壤機制探討[J].江蘇農業科學,2019,47(14):1-6.
                   Zhang Shaokang,et al.Discussion on mechanisms of remediation of heavy metal contaminated soil by multiple reinforcement techniques combined with plants[J].,2019,47(14):1-6.
                  點擊複制

                  多種強化技術聯合植物修複重金屬汙染土壤機制探討(PDF)
                  分享到:

                  《江蘇農業科學》[ISSN:1002-1302/CN:32-1214/S]

                  卷:
                  第47卷
                  期數:
                  2019年第14期
                  頁碼:
                  1-6
                  欄目:
                  專論與綜述
                  出版日期:
                  2019-08-10

                  文章信息/Info

                  Title:
                  Discussion on mechanisms of remediation of heavy metal contaminated soil by multiple reinforcement techniques combined with plants
                  作者:
                  章紹康1 弓曉峰1 易佳璐1 申钊穎1 王光輝2
                  1.南昌大學資源環境與化工學院/南昌大學鄱陽湖環境與資源利用教育部重點實驗室,江西南昌 330031;
                  2. 東華理工大學水資源與環境工程學院,江西南昌 330013
                  Author(s):
                  Zhang Shaokanget al
                  關鍵詞:
                  植物修複重金屬汙染土壤修複機制
                  Keywords:
                  -
                  分類號:
                  X53
                  DOI:
                  -
                  文獻標志碼:
                  A
                  摘要:
                  近幾年來植物修複技術以其低成本性、環境友好性成爲了國內外重金屬汙染土壤修複的研究重點。本文主要論述水肥調控、農藝調控、基因工程、螯合劑、鈍化劑、叢枝菌根真菌、解磷菌、根瘤菌、植物內生菌、蚯蚓等工藝和修複技術強化植物修複重金屬汙染土壤的發展和機制,以期爲土壤重金屬修複提供依據。
                  Abstract:
                  -

                  參考文獻/References:

                  [1]Ali H,Khan E,Sajad M A. Phytoremediation of heavy metals—concepts and applications[J]. Chemosphere,2013,91(7):869-881.
                  [2]Rutigliano L,Fino D,Saracco G,et al. Electrokinetic remediation of soils contaminated with heavy metals[J]. Journal of Applied Electrochemistry,2008,38(7):1035-1041.
                  [3]Dirilgen N. Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemna minor[J]. Chemosphere,1998,37(4):771-783.
                  [4]Yao Z T,Li J H,Xie H H,et al.Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences,2012,16:722-729.
                  [5]Li H F,Wang Q G,Cui Y S.Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-a preliminary study[J]. Science of the Total Environment,2005,339(1/2/3):179-187.
                  [6]Wang L,Ji B,Hu Y H,et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere,2017,184:594-600.
                  [7]Brooks R R,Lee J,Reeves R D,et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J]. Journal of Geochemical Exploration,1977,7:49-57.
                  [8]Blaylock M J,Salt D E,Dushenkov V,et al.Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science and Technology,1997,31(3):860-865.
                  [9]陳同斌,韋朝陽,黃澤春,等. 砷超富集植物蜈蚣草及其對砷的富集特征[J]. 科學通報,2002,47(3):207-210.
                  [10]Zhang T,Wu Y X,Huang X F,et al. Simultaneous extraction of Cr(Ⅵ) and Cu(Ⅱ) from humic acid with new synthesized EDTA derivatives[J]. Chemosphere,2012,88(6):730-735.
                  [11]Memon A R,Schrder P. Implications of metal accumulation mechanisms to phytoremediation[J]. Environmental Science and Pollution Research,2009,16(2):162-175.
                  [12]Gisbert C,Ros R,de Haro A,et al. A plant genetically modified that accumulates Pb is especially promising for phytoremediation[J]. Biochemical and Biophysical Research Communications,2003,303(2):440-445.
                  [13]Bhargava A,Carmona F F,Bhargava M,et al. Approaches for enhanced phytoextraction of heavy metals[J]. Journal of Environmental Management,2012,105:103-120.
                  [14]Ruiz O N,Daniell H. Genetic engineering to enhance mercury phytoremediation[J]. Current Opinion in Biotechnology,2009,20(2):213-219.
                  [15]Zeller S L,Kalinina O,Brunner S,et al. Transgene × environment interactions in genetically modified wheat[J]. PLoS One,2010,5(7):e11405.
                  [16]Zaccheo P,Crippa L,Pasta V M. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower[J]. Plant and Soil,2017,301(1/2):325.
                  [17]Wu W H,Xie Z M,Xu J M,et al. Immobilization of trace metals by phosphates in contaminated soil near lead/zinc mine tailings evaluated by sequential extraction and TCLP[J]. Journal of Soils and Sediments,2013,13(8):1386-1395.
                  [18]鄭順安,鄭向群,張鐵亮,等. 水分條件對紫色土中鉛形態轉化的影響[J]. 環境化學,2011,30(12):2080-2085.
                  [19]Vmerali T,Bandiera M,Mosca G. Plant based remediation processes[M]. Berlin:Springer,2013:141-158.
                  [20]秦麗,湛方棟,祖豔群,等. 土荊芥和蠶豆/玉米間作系統中Pb、Cd、Zn的累積特征研究[J]. 雲南農業大學學報(自然科學版),2017,32(1):153-160.
                  [21]楊洋,陳志鵬,黎紅亮,等. 兩種農業種植模式對重金屬土壤的修複潛力[J]. 生態學報,2016,36(3):688-695.
                  [22]Lingua G,Todeschini V,Grimaldi M,et al. Polyaspartate,a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil[J]. Journal of Environmental Management,2014,132:9-15.
                  [23]張玉秀,黃智博,柴團耀.螯合劑強化重金屬汙染土壤植物修複的機制和應用研究進展[J]. 自然科學進展,2009,19(11):1149-1158.
                  [24]Lee J,Sung K. Effects of chelates on soil microbial properties,plant growth and heavy metal accumulation in plants[J]. Ecological Engineering,2014,73:386-394.
                  [25]Ko C H,Chen P J,Chen S H,et al. Extraction of chromium,copper,and arsenic from CCA-treated wood using biodegradable chelating agents[J]. Bioresource Technology,2010,101(5):1528-1531.
                  [26]Li H F,Wang Q R,Cui Y S,et al. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-preliminary study[J]. Science of the Total Environment,2005,339(1/2/3):179-187.
                  [27]Xie Z Y,Chen N C,Liu C S,et al. Synthesis and characterization of ethylenediamine tetraacetic acid tetrasodium salt loaded in microcapsules with slow release properties[J]. Chinese Journal of Chemical Engineering,2010,18(1):149-155.
                  [28]Guo G L,Zhou Q X,Ma L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:a review[J]. Environmental Monitoring and Assessment,2006,116(1/2/3):513-528.
                  [29]郭彬,劉琛,傅慶林,等. 有機-無機型鈍化劑對水稻土镉鈍化效果研究[J]. 核農學報,2017,31(6):1173-1178.
                  [30]He M,Shi H,Zhao X Y,et al. Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite [J]. Procedia Environmental Sciences,2013,18:657-665.
                  [31]郭曉方,衛澤斌,謝方文,等. 過磷酸鈣與石灰混施對汙染農田低累積玉米生長和重金屬含量的影響[J]. 環境工程學報,2012,6(4):1374-1380.
                  [32]湯帆,胡紅青,蘇小娟,等. 磷礦粉和腐熟水稻稭稈對土壤鉛汙染的鈍化[J]. 環境科學,2015,36(8):3062-3067.
                  [33]Mamindy-Pajany Y,Hurel C,Geret F,et al. Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As,Cd,Cu,Mo,Ni,Zn ) in marine dredged sediments:a pilot-scale experiment[J]Journal of Hazardous Materials,2013,252-253:213-219.
                  [34]金玉. 納米羟基磷灰石與黑麥草聯合修複鉛汙染土壤的研究[D]. 保定:河北大學,2015.
                  [35]Smith S E,Read D J.Mycorrhizal symbiosis [M]. Cambridge,UK:Academic Press,2008:13-41.
                  [36]Janou sˇková M,Pavlíková D,Vosátka M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil[J]. Chemosphere,2006,65(11):1959-1965.
                  [37]申鴻,劉于,李曉林,等. 叢枝菌根真菌(Glomus caledonium)對銅汙染土壤生物修複機理初探 [J]. 植物營養與肥料學報,2005,11(2):199-204.
                  [38]Azcón R,del Carmen Perálvarez M,Roldán A,et al. Arbuscular mycorrhizal fungi,Bacillus cereus,and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants[J]. Microbial Ecology,2010,59(4):668-677.
                  [39]Ouziad F,Hildebrandt U,Schmeizer E,et al. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress[J]. Plant Physiology,2005,162(6):634-649.
                  [40]Meyer J R,Linderman R G. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium,Pseudomonas putida[J]. Soil Biology and Biochemistry,1986,18(2):185-190.
                  [41]Nadeem S M,Ahmad M,Zahir Z A,et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnology Advances,2014,32(2):429-448.
                  [42]Rajkumar M,Ae N,Prasad M N V,et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology,2010,28(3):142-149.
                  [43]林钰柵,範缙,蔡邦平,等. 解磷微生物在重金屬汙染原位修複中的作用及其機理研究進展[J]. 廈門大學學報(自然科學版),2016,55(5):697-706.
                  [44]Zaidi S,Usmani S,Singh B R,et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J]. Chemosphere,2006,64(6):991-997.
                  [45]Li Z,Bai T S,Dai L T,et al. A study of organic acid production in contrasts between two phosphate solubilizing fungi:Penicillium oxalicum and Aspergillus niger[J]. Scientific Reports,2016,6:25313.
                  [46]He H D,Ye Z H,Yang D J,et al. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd,Pb,Zn uptake by Brassica napus[J]. Chemosphere,2013,90(6):1960-1965.
                  [47]Dimkpa C O,Merten D,Svato sˇ A,et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biology & Biochemistry,2009,41(1):154-162.
                  [48]Topolska J,Latowski D,Kaschabek S,et al. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida[J]. Environmental Science and Pollution Research,2014,21(2):1079-1089.
                  [49]王瑾,王喆之,董忠民. 土壤氫氧化細菌促進作物生長機理研究進展[J]. 應用與環境生物學報,2012,18(5):853-861.
                  [50]趙葉舟,王浩銘,汪自強. 豆科植物和根瘤菌在生態環境中的地位和作用[J]. 農業環境與發展,2013,30(4):7-12.
                  [51]Almeida Pereira S I,Gusmo Lima A I,de Almeida Paula Figueira E M. Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils[J]. Microbial Ecology,2006,52(2):176-186.
                  [52]缪福俊,熊智,孫浩,等. 蘭坪鉛鋅尾礦區豆科植物根瘤菌耐受性研究[J]. 安徽農業科學,2010,38(21):11365-11367,11426.
                  [53]Stone J K,Bacon C W,White J F.An overview of endophytic microbes:endophytism defined[M]//Microbial endophytes. New York:Marcel Dekker,2000.
                  [54]馬瑩,駱永明,滕應,等. 內生細菌強化重金屬汙染土壤植物修複研究進展[J]. 土壤學報,2013,50(1):195-202.
                  [55]Ma Y,Rajkumar M,Moreno A,et al. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress[J]. Chemosphere,2017,185:75-85.
                  [56]Zahoor M,Irshad M,Rahman H,et al. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7[J]. Ecotoxicology and Environmental Safety,2017,142:139-149.
                  [57]李飛宇. 土壤重金屬汙染的生物修複技術[J]. 環境科學與技術,2011,34(12):148-151.
                  [58]Uwizeyimana H,Wang M E,Chen W P,et al. The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil[J]. Environmental Toxicology and Pharmacology,2017,55:20-29.
                  [59]Dedeke G A,Owagboriaye F O,Adebambo A O,et al. Earthworm metallothionein production as biomarker of heavy metal pollution in abattoir soil[J]. Applied Soil Ecology,2016,104:42-47.
                  [60]Saint-Denis M,Narbonne J F,Arnaud C,et al.Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil,effects of carbary[J]. Soil Biology & Biochemistry,2001,33(7/8):1123-1130.
                  [61]Zhang S J,Hu F,Li H X,et al. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation[J]. Environmental Pollution,2009,157(10):2737-2742.
                  [62]Zhang S J,Tang C,Li H X,et al. Earthworm mucus enhanced cadmium accumulation of tomato seedlings[J]. International Journal of Phytoremediation,2009,12(1):24-33.
                  [63]Antisari L V,Carbone S,Gatti A,et al. Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil[J]. Applied Soil Ecology,2016,108:62-71.

                  相似文獻/References:

                  [1]沈羽,張開梅,方炎明.蕨類植物修複土壤與淨化水體的研究進展[J].江蘇農業科學,2014,42(01):11.
                   Shen Yu,et al.Research progress of application of ferns in restoration of soil and purification of water[J].,2014,42(14):11.
                  [2]黃凱,張杏鋒,李丹.改良劑修複重金屬汙染土壤的研究進展[J].江蘇農業科學,2014,42(01):292.
                   Huang Kai,et al.Research progress of remediation of heavy metals contaminated soil using soil improvers[J].,2014,42(14):292.
                  [3]張曉東,熱沙來提·買買提,劉志剛.荠菜對土壤重金屬镉(Cd)和鉛(Pb)的修複效應[J].江蘇農業科學,2016,44(04):477.
                   Zhang Xiaodong,et al.Phytoremediation of cadmium and lead polluted soil by Capsella bursa-pastoris[J].,2016,44(14):477.
                  [4]張佩華,韋穎,李鵬善,等.蒼耳在PAHs脅迫下的根系響應[J].江蘇農業科學,2015,43(11):458.
                   Zhang Peihua,et al.Roots response of Xanthium sibiricum Patr under PAHs stress[J].,2015,43(14):458.
                  [5]潘瓊,潘峰.湖南省冶礦城市土壤重金屬汙染現狀及評估[J].江蘇農業科學,2015,43(10):405.
                   Pan Qiong,et al.Status and evaluation of heavy metals pollution in soils around main mining cities in Hunan Province[J].,2015,43(14):405.
                  [6]劉亞萍,趙豔玲,侯東文,等.基于CLUE-S模型重金屬汙染區域空間優化配置研究[J].江蘇農業科學,2014,42(06):326.
                   Liu Yaping,et al.Study on space optimization of heavy metal pollution area based on CLUE-S model[J].,2014,42(14):326.
                  [7]毛雪飛,吳羽晨,張家洋.重金屬汙染對土壤微生物及土壤酶活性影響的研究進展[J].江蘇農業科學,2015,43(05):7.
                   Mao Xuefei,et al.Research progress on effects of heavy metal pollution on soil microorganism and soil enzyme activity[J].,2015,43(14):7.
                  [8]石娟娟,趙豔玲,何廳廳,等.金礦區土壤鉛和銅空間結構及變異規律[J].江蘇農業科學,2014,42(07):373.
                   Shi Juanjuan,et al.Spatial structure and variation of lead and copper in goldfields soil[J].,2014,42(14):373.
                  [9]崔世友,張蛟蛟.沿海灘塗野生葉用芥菜的耐鹽性及利用潛力[J].江蘇農業科學,2014,42(12):397.
                   Cui Shiyou,et al.Salinity tolerance and utilization potential of wild Brassica juncea in tidal field[J].,2014,42(14):397.
                  [10]李書幻,溫祝桂,陳亞茹,等.我國蔬菜重金屬汙染現狀與對策[J].江蘇農業科學,2016,44(08):231.
                   Li Shuhuan,et al.Current situation and countermeasures of Chinas vegetable heavy metal pollution[J].,2016,44(14):231.
                  [11]史景允,于偉紅,梁秋生.蓖麻對镉汙染土壤的修複潛力[J].江蘇農業科學,2014,42(11):386.
                   Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].,2014,42(14):386.
                  [12]楊桂英.蕨類植物修複重金屬汙染的應用研究進展[J].江蘇農業科學,2016,44(05):10.
                   Yang Guiying.Research progress of pteridophyta applied in phytoremediation of heavy metal contaminated environments[J].,2016,44(14):10.
                  [13]付遠洪,李朝婵,顧雲兵,等.高山杜鵑對煤礦區土壤重金屬富集評價[J].江蘇農業科學,2018,46(01):196.
                   Fu Yuanhong,et al.Evaluation of heavy metal enrichment capacity of Rhododendron lapponicum in coal mining area[J].,2018,46(14):196.
                  [14]劉翊涵,肖智華,鄒冬生,等.不同油菜類型對土壤重金屬镉汙染的響應[J].江蘇農業科學,2018,46(23):362.
                   Liu Yihan,et al.Response of different rape types to soil heavy metal cadmium pollution[J].,2018,46(14):362.

                  備注/Memo

                  備注/Memo:
                  收稿日期:2018-04-02
                  基金項目:國家自然科學基金(編號:41761095);江西省研究生創新項目(編號:YC2017-B003)。
                  作者簡介:章紹康(1991—),男,江西撫州人,博士研究生,主要從事土壤重金屬修複研究。E-mail:77597646@qq.com。
                  通信作者:弓曉峰,博士,教授,主要從事重金屬汙染防治與修複、環境汙染與食品安全研究。E-mail:xfgong@ncu.edu.cn。
                  更新日期/Last Update: 2019-07-20
                  X-POWER-BY FNC V1.0.0 FROM 自制42